

Experiences with 3D Printing and Practical Applications

Christian Falkenberg-Andersen B.Sc, BSc, MSc, MD. CUUG NOV 26, 2024

Outline:

*Get demo printing

*My introduction to 3D printing.

cuug connection

*My printers:

Prusa I3 MK3 purchased july 2018

Prusa XL. Purchased September 2023

(After waiting for it for 2 years.)

*Versatility of what you can make with 3D printer

lots of examples

OpenSCAD- the cad software I prefer to use for my designs

* finish with demo if printing was successful

My introduction to 3D printing.

- cuug connection

Watch out who you sit next to

Prusa I3 MR3 (since 2018)

- -company has been around for a while.
- -a lot of the parts are 3D printed.
- reasonable size 20x20x25cm prints
- -Came disassembled (good thing)
- -0.4mm nozzle.
- mishaps fan skirt,wire harness screw

Original Prusa i3 MK3

3D printing

Prusa XL September 2023

- -wanted to print bigger things. 36x36x36 cm
- -I stuck with Prusa because I had been happy with
 - **1st printer**
- Core xy printer compared to a "bed slinger" printer. -0.6mm nozzle prints faster.
- multihead capability (I don't have that.
- Mishap: print nozzle came apart

So what can you make with a 3D printer

- So what can you make with a 3D printer
- -really anything you can think of. With some limitation
- cannot print in mid air (>25 mm)
- overhang gets rough for angles less than 45 degrees
- some types of filament gets soft at low temperatures
 - **PLA 60*C**
 - PET-G. 85 *C
 - ABS 105 *C
 - **TPU.** Flexible filament, very strong, prints slow

Lots of diverse printed examples (Pictures and videos from phone folder)

Lots of diverse printed examples Rotating platform for plants (" π " turns per day)

Lots of diverse printed examples Rain water diverter (PLA but with paint it has lasted 5 years.

Lots of diverse printed examples

Lots of diverse printed examples

Lots of diverse printed examples (triple actuator)

Lots of diverse printed examples

Lots of diverse printed examples Dog water dish monitor

Lots of diverse printed examples (water pump)

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

Lots of diverse printed examples (hardwood floor protection)

Lots of diverse printed examples (cyclone dust extraction for woodworking)

Lots of diverse printed examples

-Japanese garden gravel pattern tool

Lots of diverse printed examples (cleanout cover)

Lots of diverse printed examples (dryer duct cover)

Lots of diverse printed examples

- herb flower pot made from abs filament

Lots of diverse printed examples -drying tray

Lots of diverse printed examples -Dishwasher on/off button

Lots of diverse printed examples

- drawer cutlery trays- made to fit the drawer

Lots of diverse printed examples

Squeegee cost \$2.00.

Amazon cost (\$17-\$19)

How to generate a 3dimensional model for printing

- -Fusion 360 can get hobby license but have to pay if revenue >\$1000USD/year
- -Blender free program.
- -Freecad free
- -OpenSCAD- free. My preferred program.
- -And others.

OpenSCAD. <u>https://openscad.org/</u>

- Construct final shape by adding or subtracting
 - Geometric objects.
- Has useful libraries
 - https://openscad.org/libraries.html
 - https://github.com/revarbat/BOSL/wiki/shapes.scad
- (LIB needs to be in the right location)
- **Useful cheat sheet**
 - https://openscad.org/cheatsheet/index.html
- Can set up a customizer

- **Process: CAD->STL file-> slicer program -> Print**
- Some simple OpenSCAD examples: <u>switch to Mac</u>

OpenSCAD. <u>https://openscad.org/</u> Screen shots in case links did not work

2D circle(radius | d=diameter) square(size,center) square([width,height],center) polygon([points]) polygon([points],[paths]) text(t, size, font, halign, valign, spacing, direction, language, script) Two cylinders import("....ext", convexity) projection(cut) sphere(radius | d=diameter) cube(size, center) cube([width,depth,height], center) cylinder(h,r|d,center) Convex hull of two cylinder(h,r1|d1,r2|d2,center) polyhedcon(points, faces, convexity) Flow Control import("....ext", convexity) for (i = [start:end]) { ... } linear extrude(height,center,convexity,twist,slice for (i = [start:step:end]) { ... } rotate extrude(angle,convexity) for (i = []) { } surface(file = "....ext",center,convexity) <u>for</u> (i = ..., j = ..., ...) { ... }

Transformations translate([x,y,z]) rotate([x,v,z])

A box and a cylinder

Minkowski sum of the box and cylinder

Screen shots so things can be shown in zoom:

- this is used to keep wreath shaped flowers and branches moist this xmas

Screen shots so things can be shown in zoom

-17 lines makes a wheel with holes for bearings.

OpenSCAD. https://openscad.org/ Screen shots so things can be shown in zoom

OpenSCAD. https://openscad.org/ Screen shots so things can be shown in zoom

Back to finger splint (if printing worked !)

-Mallet finger injury

-common injury to ends of fingers

-Merc manual link :

https://www.merckmanuals.com/professional/injuries-poisoning/sprains-andother-soft-tissue-injuries/mallet-finger

-Benefits of using 3D splint Can achieve a good fit

OpenSCAD. https://openscad.org/ Screen shots so things can be shown in zoom

Splint illustration (in case demo did not work)

Measurements were done on L hand Left 5th digit Right 5th digit

?????